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Abstract

Advanced materials made of a combination of viscoelastic coating and piezoelectric substances are fast
emerging as important acoustics materials that can be used to reduce or eliminate scattered acoustic signals
of submerged structures. In this paper, we considered the underlying principles that govern the acoustic
performance of viscoelastic and piezoelectric materials. Analytical treatments such as the invariant
embedding techniques, potential method, Floquet theory and asymptotics approximation, are employed to
derive the mathematical model for predicting the acoustics performance of viscoelastic and piezoelectric
materials. Numerical implementations in finite difference methods coupled with boundary integral
formulation, and commercial finite elements code, such as ANSYS, are demonstrated for some practical
configurations. Results for a few representative canonical examples of the problem, which include two-
dimensional acoustic scattering from a fluid-loaded plate embedded with viscoelastic material or
piezoelectric elements served as useful benchmarks for future works in this direction.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The Office of Naval Research has identified 5 areas related to ship signature that are receiving a
great deal of attention [1]. The five areas consist of underwater acoustic, infrared, radar cross-
section, electromagnetic compatibility, and underwater electromagnetic. Of these, the underwater
acoustic signature appears to be the most ‘‘exploitable’’ feature of a ship’s signature. It is
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exploitable in either a passive mode, where transducers listen for radiated noise from a ship, or in
an active mode, where a ship is insonified by an acoustic field that generates a scattered acoustic
response. Sources of radiated acoustic noise come primarily from internal structures of a ship such
as propulsion engines or from external fluid flow over the hull and/or appendages of the ship.
Naval ships are subjected to acoustic interrogation (either passive or active) by increasingly
sophisticated underwater transducers and transducer arrays. Hence, technologies that may
enhance a ship’s ‘‘stealth’’ capabilities are of interest to many navies.
Passive treatment in reduction of acoustic radiation or scattering involves the use of

sophisticated materials that act as dampers of acoustic/structural wave propagation (for example
viscoelastic layers) [2]. Various authors [3–5] have studied the effectiveness of compliant coatings
in reducing reflections from and radiation by submerged structures. Mathematical and numerical
models to determine the effective impedance of such layers have also been derived [6–8].
Active treatment of acoustic signals, on the other hand, requires the use of piezoelectric

substances such as PZT and polyvinylidene fluoride (PVDF) that have the ability to actively alter
their acoustic properties by the introduction of electric fields or voltage potentials. This unique
property of the piezoelectric substances can be exploited to generate acoustic disturbances in the
manufacturing of underwater transducers [9], or for the purpose of suppressing unwanted
reflections or radiation from underwater structures [10–15]. The Varadan’s were involved in four of
the cited works. In particular, Ref. [10] evaluated electrical circuit models of a bilaminate fluid-
loaded plate, while Refs. [13,14], are concerned with finite element modelling of fluid-loaded
piezoelectric, and piezoelectric embedded plates. Ref. [12] reports on experiments involving one-
dimensional (1-D) water-filled pulse tubes. The work of Braga [11] provides much of the underlying
principles of the physics and related mathematical considerations in this area of wave propagation.
In his treatment, analytical forms for reflection coefficients generated by scattering from a layered
material are found by invariant imbedding techniques [16]. Aside from the references just cited,
other publications in the area of material design for signal reduction are very limited.
The advances in material science and signal processing techniques have led to the emerging of

new acoustic materials that combine the passive coating with active piezoelectric substances for
broadband noise cancellation. Mathematical and numerical models that are capable of simulating
the underlying physics of these hybrid acoustic materials will be of great interest to researchers in
the area of underwater acoustics. This paper is concerned with the formulation of a mathematical
framework for the acoustics analysis of advanced materials. The modelling of viscoelastic layer
and piezoelectric substances is based on the invariant embedding technique and the potential
method. Solutions of representative canonical problems in acoustic radiation and scattering are
presented to illustrate the approach. Finally, application examples are given to show the effect of
piezoelectric substances for acoustic signal reduction. The mathematical formulation and the
numerical results presented in this paper will be useful to the study of broadband acoustics signal
reduction using hybrid viscoelastic and piezoelectric materials.

2. Geometry’s of problems considered

The geometry for the first few problems discussed is given in Fig. 1 below. There is an
elastic slab of thickness te fluid loaded above, and in perfect welded contact to either a
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vacuum backed viscoelastic (or piezoelectric) layer of thickness tv (or tp). The radiation problem
considered here is two-dimensional (2-D), implying that the resulting fluid pressures produced by
either the applied voltages across the piezoelectric layer or applied normal stress on the underside
of the viscoelastic layer are planar. The material properties of the media are given in Table 1.
For PZT4, there are several parameters that characterize the anisotropic material. In

particular, the elastic (stiffness) moduli are: c11 ¼ 1:39� 1011 Pa, c13 ¼ 7:784� 1010 Pa,
c33 ¼ 1:1541� 1011 Pa, c44 ¼ 2:564� 1010 Pa; the dielectric constants are: e1 ¼ 730e0; e3 ¼ 635e0;
where e0 ¼ 8:85� 10�12 F/m is the free space dielectric constant; and the piezoelectric constants
are: e15 ¼ 12:718C/m2, e31 ¼ �5:203C/m2, e33 ¼ 15:08C/m2. These values for PZT4 were taken
from the ANSYS library [17], while those for the viscoelastic material listed in the table, are valid
at a frequency of 1 kHz, and are taken from a monogram by Nashif and Jones [18]. A second
viscoelastic material with frequency-dependent material parameters was taken from Ref. [19],
where it was characterized as a soft polymer. Its material parameters at frequency f are given by
log10ðjjmjjÞ ¼ 5:93978þ 0:26618 log10ðf Þ � 0:03613� ðlog10ðf ÞÞ

2þ0:0041ðlog10ðf ÞÞ
3; dm¼ 0:05251þ

0:19374 log10ðf Þ � 0:06209ðlog10ðf ÞÞ
2þ0:00819ðlog10ðf ÞÞ

3; bulk modulus=3� 109� (1�dmi); shear
modulus=||m||� (1�dmi); density=935kg/m3.
The canonical problems of scattering and radiation from a baffled, bilaminate are also

considered in this study. The geometry is similar to the infinite case, except that the fluid structure
interaction is truncated by the addition of a baffle which serves as boundary of the numerical
domain. A geometrical set-up for this problem is given in Fig. 2 below.
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Fig. 1. Schematic of acoustics radiation and reflection from infinite bilaminates.

Table 1

Properties of media and materials used in the present study

Media Density (kg/m3) Young’s modulus (Pa) Shear modulus (Pa)

Water rf ¼ 1000 2.25� 109 (Bulk) 0

Elastic re ¼ 7850 2.07� 1011 8.10� 1010

Viscoelastic (FEM) rv ¼ 909 8.22� 106(1�i) 2.758� 106(1�i)
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3. Mathematical framework

The governing equations used in this paper for the elastic and viscoelastic materials can be
found in standard texts on elastic wave propagation [20]. The equations are:

Stress : Sij ¼
1

2

@ui

@xj

þ
@uj

@xi

� �
¼

1

2
ðui;j þ uj;iÞ i; j ¼ 1; 2; 3; ð1Þ

Stress=strain relation : Tij ¼ cijklSkl i; j; k; l ¼ 1; 2; 3; ð2Þ

Eq: of motion :
@Tij

@xj

þ Fi ¼ r
@2ui

@t2
Fi body forces; ð3Þ

where ui; Sij; Tij; and cijkl are the elastic displacements, stress, strain, and stiffness constants of the
elastic material.
For a piezoelectric material, coupling between the elastic and electromagnetic effects is

modelled by the piezoelectric coupling equations

Di ¼ eS
ij Ej þ eiJSJ ; TI ¼ �eIjEj þ cE

IJSJ ; ð4Þ
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Fig. 2. Radiation and reflection from a baffled elastic/piezo bilaminate (a) schematic of the baffled bilaminated plate,

(b) boundary of fluid domain and the location of a point source.
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in which Di; Ej; eiJ ; and es
ij are the displacement current, electric field, piezoelectric coupling

constants, and the dielectric matrix of the piezoelectric material. Note that abbreviated notation is
used to represent the stress and strain fields as well as the stiffness and piezoelectric constant
matrices. The convention used is an IEEE standard [21], but differs slightly from that used in the
ANSYS finite element code [17].
Because of the huge difference in wave speeds for elastic and electromagnetic waves, a quasi-

static approximation is used which neglects the rotational portion of the electromagnetic field in
favor of the solenoid. With this approximation, the coupled equations of motion for a
piezoelectric material are:

@

@xi

eS
ij

@F
@xj

� �
¼

@

@xi

½eiJrJkuk
;

riJcE
JKrKmum þriJeJk

@2F
@x2

k

¼ r
@2ui

@t2
; ð5Þ

where F is the electrostatic potential in the piezoelectric. An implicit assumption is made that no
free charge exists in the material. The differential operator in the above equation again uses the
abbreviated index notation mentioned previously.
For the special case of 2-D plane strain involving isotropic, homogeneous elastic media and

piezoelectric materials belonging to the hexagonal symmetry class of crystals poled along the
z-axis (PZT4 and PZT5 are of this type), the governing equations of motion can be written:
For the piezoelectric substance:

c11
@2up

@x2
þ ðc13 þ c44Þ

@2wp

@x@z
þ c44

@2up

@z2
� rp

@2up

@t2
¼ �ðe31 þ e15Þ

@2F
@x@z

;

c44
@2wp

@x2
þ ðc13 þ c44Þ

@2up

@x@z
þ c33

@2wp

@z2
� rp

@2wp

@t2
¼ �e33

@2F
@z2

� e15
@2F
@x2

;

e1
@2F
@x2

þ e3
@2F
@z2

¼ ðe31 þ e15Þ
@2up

@x@z
þ e15

@2wp

@x2
þ e33

@2wp

@z2
: ð6Þ

For the elastic or viscoelastic substance:

ðlþ 2mÞ
@2ue

@x2
þ ðlþ mÞ

@2we

@x @z
þ m

@2ue

@z2
� re

@2ue

@t2
¼ 0;

m
@2we

@x2
þ ðlþ mÞ

@2ue

@x @z
þ ðlþ 2mÞ

@2we

@z2
� re

@2we

@t2
¼ 0; ð7Þ

and for the fluid medium the simple acoustic wave equation:

@2p

@x2
þ

@2p

@z2
�

1

c2f

@2p

@t2
¼ 0: ð8Þ

In the above system of equations, ‘‘e’’ subscripts refer to elastic displacements, while ‘‘p’’
subscripts refer to the piezoelectric material, u and w are the displacements in the x and z

directions, respectively, l and m are the Lame’ constants for the elastic material, re; rp; and rf are
the elastic, piezoelectric, and fluid material densities, and p is the pressure in the fluid which has an
acoustic wave speed of cf :
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At the interface between the elastic and fluid media, continuity of both the normal strain and
normal velocity is applied, while the shear stress must vanishes leading to the boundary conditions

ðlþ 2mÞ
@we

@z
þ l

@ue

@x
¼ �p; m

@we

@x
þ

@ue

@z

� �
¼ 0;

@p

@z
¼ �rf

@2we

@t2
: ð9Þ

At the elastic/piezoelectric boundary one has continuity of stress and displacement leading to
the conditions

ue ¼ up; we ¼ wp;

ðlþ 2mÞ
@we

@z
þ l

@ue

@x
¼ e33

@F
@z

þ c13
@up

@x
þ c33

@wp

@z
;

m
@we

@x
þ

@ue

@z

� �
¼ e15

@F
@x

þ c44
@up

@z
þ
@wp

@x

� �
: ð10Þ

For the interface between an elastic and viscoelastic material, the conditions listed above on the
left side of the equations must be matched by equivalent terms using the material properties and
displacements of the viscoelastic substance when two materials are in perfect contact.
The boundary condition for the electric potential function at the piezoelectric/elastic interface is

given by

F ¼ F0:

At the bottom (free) surface of the piezoelectric layer, the potential is grounded (F ¼ 0), and the
normal and tangential stress components must vanish leading to the equations

e33
@F
@z

þ c13
@up

@x
þ c33

@wp

@z
¼ 0; e15

@F
@x

þ c44
@up

@z
þ

@wp

@x

� �
¼ 0; F ¼ 0: ð11Þ

All problems considered assume a time dependence given by expð�iotÞ; for which time domain
results could be found using fast Fourier transforms. Initial conditions for each of the problems
are unnecessary since steady state solutions are sought. Radiation and/or decaying conditions are
needed however to eliminate unrealistic waves such as those, which blow up as they propagate or
come from infinity. At large distances from a finite scatterer the condition is referred to as the
Sommerfeld radiation condition, which in two dimensions can be written

@p

@r
þ

1

2r
p þ

1

cf

@p

@t
-0 as r-N: ð12Þ

A line source is used to perform scattering calculations from the baffled bilaminate in two
dimensions. It is given by

pI ðx;x0; z; z0Þ ¼ �AP
i

4
H1

0 kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ

2 þ ðz � z0Þ
2

q� �
; ð13Þ

in which the co-ordinates of the line source are x ¼ x0; z ¼ z0; and the amplitude AP (in Pa) of the
incident pressure is related to the source strength of the point source Q by the relationship

Q ¼
AP

iorf

; ð14Þ

and H1
0 is a zero order Hankel function of the first kind.
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4. Analytic methods

4.1. Invariant embedding methods

It is convenient for plane wave propagation in layered media to write the system of governing
partial differential equations in terms of a matrix of ordinary differential equations for a state
vector which includes the depth dependent variables of stress, displacement and electric potential
(see for example Ref. [22]). This is essentially the method adopted by Honein et al. in their paper
on suppressing plane wave reflections from a fluid loaded piezoelectric laminate [23]. Because of
the incident plane wave (or applied voltage) ðx; tÞ time/space dependence, all field variables are
written explicitly of the form

~CCðx; z; tÞ ¼~xxðzÞe�iotþikxx; ð15Þ

where kx ¼ kf sin yI is the ‘‘horizontal’’ wave number of the problem. The state vector for the
piezoelectric layer can then be written

~xxp ¼

upðzÞ

wpðzÞ

D3ðzÞ

T5ðzÞ

T3ðzÞ

FðzÞ

2
6666666664

3
7777777775
: ð16Þ

The T ’s in the above vector are stress components, D3 is the electric displacement, F is the
electric potential, and u and w are the horizontal and vertical displacements in the piezoelectric
layer. With the assumed t and x dependence, the governing equations for the piezoelectric layer
can be written as a matrix ordinary differential equation in the variable z which involves the
so-called ‘‘Stroh’’ matrix Ap:

d~xxp

dz
¼ Ap

~xxp; ð17Þ

with

Ap ¼

0 �ikx 0 1=c44 0 �ikxb1
ikxa4 0 a2 0 a1 0

0 0 0 �ikxb1 0 k2
xb2

�rpo
2 þ k2

xðc11 þ c13a4 þ e31a5Þ 0 ikxa5 0 ikxa4 0

0 �rpo
2 0 �ikx 0 0

ikxa5 0 a3 0 a2 0

2
6666666664

3
7777777775
;
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a0 ¼ c33e3 þ e233; a4 ¼ �ðe3c13 þ e33e31Þ=a0;

a1 ¼ e3=a0; a5 ¼ ðc33e31 þ e33c13Þ=a0;

a2 ¼ e33=a0; b1 ¼ e15=c44;

a3 ¼ �c33=a0; b2 ¼ �ðe1 þ e215=c44Þ:

A similar formulation for an isotropic, homogeneous, elastic or viscoelastic layer can be done
leading to the state vector, differential equations, and Stroh matrix

~xxe ¼

ueðzÞ

weðzÞ

T5ðzÞ

T3ðzÞ

2
6664

3
7775;

d~xxe

dz
¼ Ae

~xxe; ð18Þ

Ae ¼

0 �ikx 1=m 0

�ikxl=ðlþ 2mÞ 0 0 1=ðlþ 2mÞ

�reo
2 þ 4k2

xmðlþ mÞ=ðlþ 2mÞ 0 0 �ikxl=ðlþ 2mÞ

0 �reo
2 �ikx 0

2
6664

3
7775:

In the special case of a bilaminate, with an elastic upper layer of thickness jz1j in contact with
water at z ¼ 0; and a bottom piezoelectric layer of thickness jz2 � z1j having zero voltage and zero
stress along its underside, and an applied voltage of f0 at the elastic/piezo interface, the following
set of interfaces conditions hold

Fluid/elastic:

weð0�Þ ¼ wð0þÞ ¼
i

oZf

ð�I þ RÞ; where Zf ¼
rf cf

cos yI

;

T5ð0Þ ¼ 0; T3ð0�Þ ¼ T3ð0þÞ ¼ �pð0Þ ¼ �ðI þ RÞ: ð19Þ

Elastic/piezo:

upðz�1 Þ ¼ ueðzþ1 Þ; where z1 ¼ �te;

wpðz�1 Þ ¼ weðzþ1 Þ;

ðTpÞ5ðz
�
1 Þ ¼ ðTeÞ5ðz

þ
1 Þ;

ðTpÞ3ðz
�
1 Þ ¼ ðTeÞ3ðz

þ
1 Þ;

Fðz1Þ ¼ F0: ð20Þ

Piezo/free:

ðTpÞ5ðz2Þ ¼ 0; where z2 ¼ �ðte þ tpÞ;

ðTpÞ3ðz2Þ ¼ 0;

Fðz2Þ ¼ 0:
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A ‘‘surface impedance tensor’’ is found for the bilaminate that can be used to determine the
pressure reflection and/or radiation coefficients. Steps taken to find this tensor are as follows:

* Find the eigenvalues/eigenvectors of the Stroh matrix for a given layer.
* Separate upward decaying or traveling modes from downward ones.
* Impose interface conditions at the bottom surface of the layer to determine an impedance

condition at the top surface of the layer.
* Continue this process from the bottom to uppermost layer.

The resultant impedance matrix is then used at the fluid/solid interface to satisfy boundary
conditions applied there that in turn determine pressure reflection and radiation coefficients.
For the particular problem considered, one starts by finding eigenvectors and eigenvalues of the

piezoelectric Stroh matrix Ap: Generalized displacement and traction vectors are introduced

~UU P ¼

up

wp

D3

2
64

3
75 ~VV P ¼

T5

T3

f

2
64

3
75;

and the eigenvalues are split into upward (li; i ¼ 1; 2; 3) and downward terms (li; i ¼ 4; 5; 6). (The
‘‘upward’’ eigenvalues are those for which ImðliÞ > 0 or ReðliÞo0 when ImðliÞ ¼ 0:)

fP
1 ¼

el1ðz�z2Þ 0 0

0 el2ðz�z2Þ 0

0 0 el3ðz�z2Þ

2
64

3
75 with eigenvectors

AP
1

LP
1

" #
: ð21Þ

AP
1 and LP

1 are 3� 3 matrices that include the generalized displacements and tractions of the
upward eigenvectors, respectively. In a similar fashion, the downward traveling eigenvectors and
eigenvalues are

fP
2 ¼

el4ðz�z2Þ 0 0

0 el5ðz�z2Þ 0

0 0 el6ðz�z2Þ

2
64

3
75 with eigenvectors

AP
2

LP
2

" #
: ð22Þ

A general solution of the ordinary differential equation for the piezoelectric layer is

~UU P ¼ AP
1f

P
1~cc1 þ AP

2f
P
2~cc2; ~VV P ¼ LP

1f
P
1~cc1 þ LP

2f
P
2~cc2: ð23Þ

Because VPðz2Þ ¼ 0 at the bottom free surface, and /P
i ðz2Þ ¼ I ; one can solve for the vector c2 in

terms of c1ðc2 ¼ �ðLP
2 Þ

�1LP
1 c1Þ; and ultimately an impedance relationship for the layer

~VV PðzÞ ¼ GPðzÞ~UU PðzÞ; z1 > z > z2; ð24Þ

where

ZP
1 ¼ LP

1 ðA
P
1 Þ

�1; ZP
2 ¼ LP

2 ðA
P
2 Þ

�1; RP ¼ �ðZP
1 Þ

�1ZP
2 ; MP

1 ðzÞ ¼ AP
1f

P
1 ðzÞðA

P
1 Þ

�1;

MP
2 ðzÞ ¼ AP

2f
P
2 ðzÞðA

P
2 Þ

�1; HPðzÞ ¼ MP
1 ðzÞR

P½MP
2 ðzÞ


�1;

GPðzÞ ¼ ½ZP
2 þ ZP

1 HPðzÞ
½I þ HPðzÞ
�1:
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The ZP
1 and ZP

2 matrices are upward and downward wave impedances, while MP
1 and MP

2 are
one-way propagator matrices for the layer.
At the interface between the piezoelectric and elastic layer (z ¼ z1), one must split off the

electric field variables in order to impose continuity conditions. At z ¼ z1 the impedance
relationship is split as follows

~VV Pðz1Þ ¼ GPðz1Þ~UU Pðz1Þ )
~ttðz1Þ

Fðz1Þ

" #
¼

G1ðz1Þ ~gg2ðz1Þ

~ggT
3 ðz1Þ g4ðz1Þ

" #
~uuðz1Þ

D3ðz1Þ

" #
: ð25Þ

By applying the interface condition on the voltage potential, (Fðz1Þ ¼ F0), one can eliminate the
D3 variable from the above set of equations to obtain an impedance relationship involving only
variables used in the elastic layer

~ttPðz1Þ ¼ gPðz1Þ~uuðz1Þ þ F0
~FF Pðz1Þ; ð26Þ

with

gPðz1Þ ¼ G1ðz1Þ �
1

g4ðz1Þ
~gg2ðz1Þ ~ggT

3 ðz1Þ ~FF Pðz1Þ ¼
1

g4ðz1Þ
~gg2ðz1Þ:

Eigenvalues and eigenvectors of the elastic Stroh matrix are found and split into upward and
downward parts. The displacement and traction vectors are

~UU E ¼
u

w

" #
and ~VV E ¼

T5

T3

" #
;

and the general solution to the matrix ODE for the elastic layer is

~UU E ¼ AE
1f

E
1~cc1 þ AE

2f
E
2~cc2; ~VV E ¼ LE

1f
E
1~cc1 þ LE

2f
E
2~cc2: ð27Þ

The four eigenvalues of the matrix ODE are associated with upward and downward
traveling compressional and shear waves. The diagonal entries in the /E

i matrices are of the form
expðliðz � z1ÞÞ so that at the elastic/piezoelectric interface, (z ¼ z1), they become identity matrices.
By employing the surface impedance tensor that was found for the piezoelectric layer, one can
solve for c1 in terms of c2; and ultimately find the impedance matrix for the elastic layer

~VV EðzÞ ¼ GEðzÞ~UU EðzÞ þ F0S
EðzÞ; 0 > z > z1; ð28Þ

where

ZE
1 ¼ LE

1 ðA
E
1 Þ

�1; ZE
2 ¼ LE

2 ðA
E
2 Þ

�1; RE ¼ �ðZE
1 � gPðz1ÞÞ

�1ðZE
2 � gPðz1ÞÞ;

ME
1 ðzÞ ¼ AE

1f
E
1 ðzÞðA

E
1 Þ

�1; ME
2 ðzÞ ¼ AE

2f
E
2 ðzÞðA

E
2 Þ

�1;

HEðzÞ ¼ ME
1 ðzÞR

E ½ME
2 ðzÞ


�1; GEðzÞ ¼ ½ZE
2 þ ZE

1 HEðzÞ
½I þ HEðzÞ
�1;

SEðzÞ ¼ ½ZE
1 � GEðzÞ
ME

1 ðzÞ½Z
E
1 � gPðz1Þ
�1~FF P:

Finally, at z ¼ 0; the impedance condition is evaluated and application of the three boundary
conditions is imposed. The impedance condition at z ¼ 0 is written

T5

T3

" #
¼

GE
11 GE

12

GE
21 GE

22

" #
ue

we

" #
þ F0

S1

S2

" #
: ð29Þ
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The boundary conditions lead to the solution for the reflection and radiation coefficients

R ¼
�1þ iðGE

11G
E
22 � GE

12G
E
21Þ=oZf GE

11

1þ iðGE
11G

E
22 � GE

12G
E
21Þ=oZf GE

11

� �
I þ

S1G
E
21=GE

11 � S2

1þ iðGE
11G

E
22 � GE

12G
E
21Þ=oZf GE

11

� �
F0: ð30Þ

If I ¼ 0; the value of R is the pressure radiation coefficient when a voltage F0 is applied, while if
F0 ¼ 0 (the piezoelectric material is short circuited), R is the reflection amplitude caused by an
incident plane wave of amplitude I : To cancel a reflected pressure wave, one must solve for the
value of F0 that causes R ¼ 0:
The invariant embedding technique can be tested by applying a simple potential method for the

case of plane wave radiation from an infinite fluid loaded layer. For the case of a single infinite
layer of either elastic or viscoelastic material under the assumption of plane strain, the
displacements of the solid can be written in terms of potentials [24]

uðx; zÞ ¼
@j
@x

�
@c
@z

wðx; zÞ ¼
@j
@z

þ
@c
@x

: ð31Þ

The phased time harmonic load applied to the underside of the solid layer and the resulting
plane wave radiated pressure into the fluid are given by

F ¼ Qe�iotþikxx; p ¼ Re�iotþikxxþikf z cos yI : ð32Þ

Substitution of the potentials into Eq. (7), splits the coupled system into two second order wave
equations for the shear and compressional potentials with solutions given by

j ¼ AeikLðx sin fþz cos fÞ þ BeikLðx sin f�z cos fÞ; ð33Þ

c ¼ CeikT ðx sin Wþz cos WÞ þ DeikT ðx sin W�z cos WÞ; ð34Þ

kL ¼ o=cL cL is the compressional phase speed;

kT ¼ o=cT cT is the shear phase speed:

As with the invariant embedding method, phases must match in the x co-ordinate (Snell’s Law),
and the remaining five boundary conditions can be used to determine the potential amplitudes
(A; B; C; and D) and the amplitude of the radiated pressure (R). These boundary conditions are
Eq. (9) applied at the fluid/solid interface (after substitution of the displacement potentials), and
the first two conditions of Eq. (9) with �p replaced by F ; and applied at the underside of the
elastic/viscoelastic layer.

5. Numerical methods

5.1. Finite element methods

The finite element analysis approach utilizes the ANSYS code. A quick review of the theoretical
underpinnings of the method follows. A more elaborate treatment can be found in the ANSYS
theory reference manual [25]. The electro-mechanical equilibrium equations for a piezoelectric
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material behavior can be written in matrix form based on an element local co-ordinate system

fTg

fDg

( )
¼

½c
 ½e


½e
T �½e


" #
fSg

�fEg

( )
; ð35Þ

where fTg is the stress vector of elastic substrate, fDg the electric flux density vector, fSg the
strain vector of elastic substrate, fEg the electric field vector, fcg the elasticity matrix (evaluated at
constant electric field), ½e
 the piezoelctric matrix and ½e
 is the dielectric matrix (evaluated at
constant mechanical strain).
The continuum model is discretized to produce a finite element model with nodal response

variables and element shape functions over an element region that approximates the exact
solution

fucg ¼ ½Nu
Tfug; ð36Þ

Vc ¼ fNVgTfVg; ð37Þ

in which fucg is the element displacement vector in the local co-ordinate system, Vc the element
electric potential, ½Nu
 the matrix of displacement shape function, fNVg the vector of electric
potential shape function and fug is the nodal displacement vector in the global co-ordinate
system.
Strain and electric field are related to displacements and potentials, respectively as follows

fSg ¼ ½Bu
fug; ffEgg ¼ �½Bn
½V 
; where ½Bu
 ¼

@

@x
0 0

0
@

@y
0

0 0
@

@z
@

@y

@

@x
0

0
@

@z

@

@y

@

@z
0

@

@x

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

½Nu
T; ½Bv
 ¼

@=@x

@=@y

@=@z

0
B@

1
CA½NV 
T:

The finite element matrix equation of the coupled system in global co-ordinates is expressed

½M
 ½0


½0
 ½0


" #
f .ug

f .Vg

( )
þ

½C
 ½0


½0
 ½0


" #
f ’ug

f ’Vg

( )
þ

½K
 ½Kz


½Kz
T ½Kd 


" #
fug

fVg

( )
¼

fFg

fLg

( )
; ð38Þ

where ½M
 ¼ structural mass matrix ¼
RR R

vol
rs½N

u
½Nu
T dðvolÞ; ½C
 ¼ structural damping matrix;

½K 
 ¼ structural stifness matrix ¼
RR R

vol
½Bu
T½c
½Bu
 dðvolÞ; ½Kd 
 ¼ dielectric conductivity matrix ¼RR R

vol
½Bn
T½e
½Bn
 dðvolÞ; ½Kz
¼piezoelectric couplig matrix¼

RR R
vol
½Bu
T½e
½Bu
 dðvolÞ; fFg¼structural

load vector ðvector of nodal forces; suface forces and body forcesÞ; and fLg ¼ electric load vector;
applied nodal charge vector:
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The finite element structural equation and the fluid wave equation are to be considered
simultaneously in fluid–structure interaction problems. Introducing the notations for the gradient
and divergence

rF ¼ fLgF; ð39Þ

r � ~FF ¼ fLgT~FF ¼
@

@x

@

@y

@

@z

� �
~FF ; ð40Þ

one can rewrite the governing equation for the fluid wave equation as

1

c2
@2p

@t2
� fLgTfLgP ¼ 0: ð41Þ

Given standard linear acoustic assumptions, fluid momentum equations yield the following
relations between the normal pressure gradient of the fluid and the normal acceleration of the
structure at a fluid–structure interface S [26]

fngfrPg ¼ �r0fng
@2fUg
@t2

or fngTðfLgPÞ ¼ �r0fngT
@2fUg
@t2

� �
; ð42Þ

where fUgT ¼ fuvwg is the global displacement vector of the structure at the fluid/structure
interface. The finite element approximating shape functions for the spatial variation of the
pressure and displacement components are

P ¼ fNgTfPeg; fUg ¼

u

v

w

8><
>:

9>=
>; ¼

fN 0gTfueg

fN 0gTfveg

fN 0gTfweg

8>><
>>:

9>>=
>>; ¼ fN 0gTfUeg; ð43Þ

with fNg the element shape function for pressure, fN 0g the element shape function for
displacement, fPeg the nodal pressure vector in element co-ordinates, fUeg the nodal
displacement component vectors in element co-ordinates and fUg is the structural nodal
displacement vector in global co-ordinates.
From the above relations, one can write a Galerkin variational form for the wave equationZ Z Z

vol

1

c2
fdPeg

TfNgfNgT dðvolÞf .Peg þ
Z Z Z

vol

fdPeg
T½B
T½B
 dðvolÞfPeg

þ
Z Z

S

r0fdPeg
TfNgfngTfN 0gT dSf .Ug ¼ 0; ð44Þ

where fng is the normal to the surface S at the fluid boundary. In terms of finite elements, this
variational equation transforms into the matrix equation

½Mp
e 
f .Peg þ ½Kp

e 
fPeg þ r0½Re
Tf .Ug ¼ f0g; ð45Þ
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with

½Mp
e 
 ¼ fluid mass matrix ¼

1

c2

Z Z Z
vol

fNgfNgT dðvolÞ;

½Kp
e 
 ¼ fluid stiffness matrix ¼

Z Z Z
vol

½B
T½B
 dðvolÞ;

r0½Re
 ¼ coupled mass matrix ¼ r0

Z Z
S

fNgfngTfN 0gT dS:

In order to account for the dissipation of energy due to radiation at the truncated fluid domain
boundary, a second surface integral term is incorporated into the wave equation as a dissipation
term [27]

½Cp
e 
f ’Peg ¼

b
cf

Z Z
SB

fNgfNgT dsf ’Peg: ð46Þ

If b ¼ cf ; the addition of the above surface integral into the fluid wave equation is essentially
equivalent to applying a first order Sommerfeld radiation condition. (½CP

e 
 is referred to as the
damping matrix).
Combining all terms for the fluid, the finite element matrix equation governing the acoustic

fluid is

½Mp
e 
f .Peg þ ½Cp

e 
f ’Peg þ ½Kp
e 
fPeg þ r0½Re
Tf .Ug ¼ f0g: ð47Þ

For the coupled fluid–structure interaction problem, the fluid pressure load acting at the
interface is added to the structure equation of motion as follows

½Me
f .Ueg þ ½Ce
f ’Ueg þ ½Ke
fUeg ¼ fFeg þ fFpr
e g; ð48Þ

where fMeg is the global structural mass matrix, fCeg the global structural damping matrix, fKeg
the global structural stiffness matrix, fUeg the nodal displacement vectors in global co-ordinates,
fFeg the nodal load vector and fFpr

e g is the fluid pressure load vector.
The fluid pressure load vector at the interface S is obtained by integrating the pressure

fFpr
e g ¼

Z Z
S

fN 0gfNgTfng dSfPeg ¼ ½Re
TfPeg; ð49Þ

where ½Re
 is the transpose of the coupled mass matrix. Substitution of the above expression into
the coupled fluid–structure equation of motion

½Me
f .Ueg þ ½Ce
f ’Ueg þ ½Ke
fUeg � ½Re
fPeg ¼ fFeg: ð50Þ

This matrix equation combined with the finite element form of the fluid wave equation that
includes fluid and damping elements becomes the system

½Me
 ½0


½Mfs
 ½Mp
e 


" #
f .Ueg

f .Peg

( )
þ

½Ce
 ½0


½0
 ½Cp
e 


" #
f ’Ueg

f ’Peg

( )
þ

½Ke
 ½Kfs


½0
 ½Kp
e 


" #
fUeg

fPeg

( )
¼

fFeg

f0g

( )
; ð51Þ

where

½Mfs
 ¼ r0½Re
T and ½Kfs
 ¼ �½Re
:
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For a problem involving fluid–structure interaction, the acoustic fluid element formulation
generates all the sub-matrices with superscript p in addition to the coupling sub-matrices.
Subscripts without a superscript are generated by the compatible structural element used in the
model. The system is solved to determine all dependent variables including fluid pressure, voltage
potentials, and displacements.

5.2. Finite difference/boundary integral methods

Applying a Green’s function argument, the scattered pressure degrees of freedom at the surface
of the fluid/solid interface can be eliminated. The fluid pressure at the interface is then replaced by
a continuum of point sources (Green’s functions) weighted by the normal acceleration of the
elastic plate. With the normal acceleration of the plate found, the scattered pressure is easily found
by a boundary integral expression involving Green’s function. The derivation of the integral
equation is as follows.
The two-dimensional half-space Green’s function is found using the free space Green’s function

and the method of images. It is given by [28]

Gðx; x; z; ZÞ ¼ �
i

4
H1

0 ðkf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xÞ2 þ ðz � ZÞ2

q
Þ þ H1

0 ðkf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xÞ2 þ ðz þ ZÞ2

q
Þ

� �
; ð52Þ

where ðx; ZÞ are the co-ordinates of the line source, and ðx; zÞ are co-ordinates of the field point.
One can use Green’s function to represent the fluid pressure at the fluid solid interface by an
integral involving the normal derivative of the scattered fluid pressure

Z L

0

Gðx; x; 0; ZÞ
@pS

@z
ðx; 0Þ dx ¼

0 if Zo0;

1

2
psðx; ZÞ if Z ¼ 0;

psðx; ZÞ if Z > 0;

8>>><
>>>:

ð53Þ

that upon substitution of the normal acceleration in lieu of the value of the normal derivative of
the pressure at the fluid/solid interface (by Euler’s equation), yields:

�io2rf

2

Z L

0

H0ðkf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xÞ2 þ Z2

q
Þwðx; 0Þ dx ¼

0 if Zo0;

1

2
psðx; ZÞ if Z ¼ 0;

psðx; ZÞ if Z > 0:

8>>><
>>>:

ð54Þ

Switching the variables ðx; ZÞ3ðx; zÞ; the integral can be used to replace the scattered pressure
expression in the normal stress boundary condition at the fluid/solid interface (at z ¼ 0), leading
to the interface conditions:

ðlþ 2mÞ
@we

@z
þ l

@ue

@x
¼ io2rf

Z L

0

H0ðkf jx � xjÞwðx; 0Þ dx� ðpI þ pRÞ; ð55Þ

m
@we

@x
þ

@ue

@z

� �
¼ 0: ð56Þ
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Matrix equations result from discretizing the equations of motion and boundary or interface
conditions, leading to a system of equations. The degrees of freedom include the horizontal and
vertical displacements at each node for elastic, viscoelastic and piezoelectric materials, as well as a
degree of freedom at each node in the piezoelectric material for the electric potential.
A second order finite difference scheme is employed for the governing equations at all interior

nodes. At free surfaces or fluid solid interfaces, a third order Taylor series approximation is
adopted. Essentially, the value of a dependent variable at an interior node is expanded in terms of
its value at the surface, its normal derivative at the surface (taken from the boundary conditions),
and its second normal derivative at the surface (in which the governing equation is used). At an
interface between elastic and piezoelectric or viscoelastic materials, an averaged expression
involving Taylor series is used to satisfy continuity boundary conditions [29]. This formulation
has the nice feature that when the two elastic materials in contact have identical material
properties, the interface differencing reverts to the standard second order differencing template
for an interior point of the elastic material.
For the integral expression, a second order accurate trapezoidal rule of integration is used

except at points where the integrand has a logarithmic singularity. At these points, the asymptotic
form for the Hankel function for small argument is used, and the integration is done analytically.
The discrete form of the integral expression evaluated at the surface point x ¼ xi is given by

io2rfDx
X50
l¼2
lai

H0ðkf jxi � xl jÞwðxl ; 0Þ �
2o2rf Dx

p
wðxi; 0Þ ln

kf Dx

2

� �
� 1

� �
: ð57Þ

Gaussian elimination with partial pivoting is used to solve the resulting system of equations.
The stated problem is forced by either: an applied voltage across the piezoelectric layer, an
incident pressure coming from the fluid, or a combination of the two. The pressure at arbitrary
field points in the fluid are found by again applying a boundary integral method which essentially
weights the fluid half-space Greens’ function by accelerations at the surface of the fluid/solid
interface.

6. Results and discussion

For the first problem, there is an infinite fluid loaded bilaminate plate, with upper layer
composed of steel and a lower layer composed of a viscoelastic material. Each layer has thickness
1 cm, and on the vacuum side of the bilaminate, there is applied a normal pressure or a 60� phased
pressure of amplitude 1Pa operating at a range of frequencies. The solutions plotted are found by
employing the invariant embedding technique. To analyze the effectiveness of the viscoelastic
layer in reducing unwanted radiated acoustic energy, pressure amplitudes are also given at each
frequency for radiation from a 1 cm, fluid loaded, steel plate (i.e., the bilaminate without the
viscoelastic layer).
Fig. 3 shows that the viscoelastic layer does little to reduce the amount of radiated acoustic

energy for the bilaminate. For the zero degree phasing of the applied pressure, the amplitude of
the radiated pressure is in fact greater than that for the elastic layer alone for frequencies above
about 14 kHz.
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The invariant embedding technique has been tested by comparing with the potential method,
described in Eqs. (31)–(34), for the case of plane wave radiation from an infinite fluid loaded layer.
Pressure radiation from a single infinite layer of 1 cm plate of elastic or viscoelastic material for
the incident pressure of 0� and 60� phase is shown in Fig. 4 which displays the exact match
between the invariant embedding method and potential method.
An alternative strategy would be to sandwich the viscoelastic layer between two elastic layers of

equal thickness. In Fig. 5, radiation from a 1 cm viscoelastic layer sandwiched between two 0.5 cm
steel layers is compared with radiation from a single 1 cm layer of steel. For the unphased
pressure, the results are similar to the bilaminate result until frequencies of about 6 kHz, at which
frequency the viscotrilaminate is less effective in suppressing the radiated pressure. When the
applied pressure is phased by 60�, the differences between the purely elastic layer and trilaminate
are more pronounced. Note that at about 3 kHz, there is a dramatic drop in the radiated pressure
amplitude due to absorption of energy by the viscoelastic layer.
A finite bilaminate is more physically realizable, but embedding methods can no longer be

employed. In such a case, one must resort to numerical methods such as finite difference or finite
element techniques. The next series of graphs will refer to a bilaminate plate of length 0.25m with
steel (thickness 1 cm) and PZT4 (thickness 2 cm), which is held fixed in an acoustically hard baffle
of infinite extent. Comparisons are made between a finite difference code and the finite element
code ANSYS for the purpose of benchmarking.
In the first example, a pure radiation problem is considered. At 1000Hz, a 1V (real and

imaginary) potential is set across the PZT4 layer, and the radiated pressure in the fluid is
determined. The bilaminate plate is considered to be simply supported. In Figs. 6–8, the pressure
amplitude at a series of points in the fluid normal to the bilaminate, followed by the amplitude of
the pressure measured at 1m from the center of the bilaminate, and finally the amplitude of the
normal surface displacement of the bilaminate, is displayed for both FEM and FDM. The results
appear to match well. FEM pressure contour of the field due to the voltage in piezoelectric layer is
presented in Fig. 9.
A second problem using the same physical set-up analyzes the results of point source scattering

from the baffled bilaminate. A line source of amplitude Ap ¼ 40; is placed about 1
2
meter above the

center of the plate, and the total pressure is found in the fluid. The total pressure is given since the
scattered pressure has a magnitude much less than the incident and specularly reflected pressures.
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Fig. 3. Radiated pressure with and without viscoelastic layer of 1 cm thickness steel, applied pressure=1Pa.
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Fig. 4. Radiated pressure from 1 cm of elastic or viscoelastic layer, applied pressure=1Pa.

Fig. 5. Radiated pressure with and without sandwiched viscoelastic layer for the case of 1 cm thick steel, with and

without 1 cm thick visco layer, applied pressure=1Pa.

Fig. 6. Pressure along the line normal to the center of plate (baffled 0.25 bilaminate, 10mm steel, 20mm PZT4)

subjected to voltage of 1V (real and imaginary) at frequency of 1000Hz.
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(The specularly reflected pressure is due to the acoustically hard baffle). Calculation of the
scattered pressure is possible in the FDM code since the incident plus specularly reflected pressures
are used as inputs to determine the scattered pressure due to the presence of the bilaminate. With
the scattered pressure found from the FDM code, the total pressure is easily calculated by adding
in the incident and specularly reflected pressures. In the FEM code, all pressure fields are
combined, and it is a difficult matter to extract the scattered pressure, which is of small amplitude
relative to the incident and specularly reflected pressures.
In comparing the FDM and FEM results, Figs. 10 and 11 are shown. In each case, the voltage

potential across the PZT4 is zero; therefore this may be considered a pure scattering problem.
Fig. 10 gives the amplitude of the pressure along a centered, normal line from the baffled plate.
Fig. 11 plots the amplitude of the pressure, at 1m from the center point of the plate, as a function
of angle from the plate surface. Comparisons between the FEM and FDM codes are quite good.
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Fig. 7. Pressure along the radial boundary of radius 1m (baffled 0.25 bilaminate, 10mm steel, 20mm PZT4) subjected

to voltage of 1V (real and imaginary) at frequency of 1000Hz.

Fig. 8. Amplitude of vertical displacement along the top surface of elastic substrate (baffled 0.25 bilaminate, 10mm

steel, 20mm PZT4) subjected to voltage of 1V (real and imaginary) at frequency of 1000Hz.
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From the solutions to the previous two cases, it is possible to calculate an applied voltage
potential that has the effect of canceling either the total or scattered pressure at any point in the
fluid caused by the scattering or reflection of the incident line source. In particular, if the point
chosen is at 1m directly above the centerline of the plate, a voltage is found by scaling the radiated
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Fig. 9. Radiated pressure by the active piezoelectric element (baffled 0.25 bilaminate, 10mm steel, 20mm PZT4)

subjected to voltage of 1V (real and imaginary) at frequency of 1000.

Fig. 10. Pressure along the line normal to center of plate for the case of scattering (baffled 0.25 bilaminate, 10mm steel,

20mm PZT4) due to flow source of strength 40 kg/s2 at frequency of 1000, where piezo is short circuited.
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pressure at 1m with a 1V potential difference by the total (or scattered) pressure calculated from
the pure scattering problem at 1m. Figs. 12 and 13 show both the finite difference and finite
element results of performing this step as a combined scattering/radiation problem to cancel the
total pressure at 1m. FEM pressure contours are presented in Figs. 14 and 15 for the case of
before and after control of the total pressure in the point of interest.
If only the scattered pressure is to be cancelled, the piezoelectric layer is much more effective.

Fig. 16 employs a voltage difference that cancels the scattered pressure at 1m using the finite
difference method. The amplitudes of the pressures at 1 meter from the plate center are displayed
in term of dB re 1 mPa. Note that for the full range of angles, there is more than a 40-point drop of
the scattered pressure amplitude when the voltage is applied.
Cancellation of one field point using active piezoelectric element has been described in this

paper. Global and local acoustics field reduction can be achieved using multiple piezoelectric
elements with different voltages applied for different piezoelectric elements. Both viscoelastic
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Fig. 11. Pressure along the radial boundary of radius 1m for the case of scattering (baffled 0.25 bilaminate, 10mm

steel, 20mm PZT4) due to flow source of strength 40 kg/s2 at frequency of 1000, where piezo is short circuited.

Fig. 12. Pressure along the radial boundary of radius 1m for the case of for the case of radiation and scattering (baffled

0.25 bilaminate, 10mm steel, 20mm PZT4, flow source of strength 40 kg/s2) at frequency of 1000, voltage of

7.564(�8.7445�) applied in the piezo.
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material and piezoelectric material can be used together for the hybrid active/passive control of
acoustic signature where optimization technique will be used for the selection of number, size and
location of the material depending on the control objective.

7. Conclusion

In order to develop the analytical treatment and mathematical formulation for predicting the
acoustic performance of both viscoelastic and piezoelectric material embedded on a fluid-loaded
plate, cancellation technique of scattered or radiated acoustics signals using piezoelectric and
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Fig. 13. Pressure along the line normal to center of plate for the case of for the case of radiation and scattering (baffled

0.25 bilaminate, 10mm steel, 20mm PZT4, flow source of strength 40 kg/s2) at frequency of 1000, voltage of

7.564(�8.74450) applied in the piezo.

Fig. 14. Contour of pressure for the case of scattering (baffled 0.25 bilaminate, 10mm steel, 20mm PZT4) due to flow

source of strength 40 kg/s2 at frequency of 1000, where piezo is short circuited.
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viscoelastic material has been implemented. Invariant embedding technique describing the
viscoelastic property of the bilaminate has been verified with a simple potential method. It can be
concluded that the use of viscoelastic layers alone in efforts to reduce unwanted acoustic radiation
is not particularly effective. Use of viscoelastic layer to reduce scattered pressures is even less
effective. Acoustic signal reduction using piezoelectric and viscoelastic material in both FEM and
FDM has been described. FEM results by ANSYS code are in good agreement with that of FDM
analysis. The mathematical formulation presented in this paper provides a guide for future use of
hybrid active/passive control of sound radiation/scattering. Work needs be done in modelling
more complicated structures, as well as constructing control mechanisms capable of reducing

ARTICLE IN PRESS

Fig. 15. Contour of pressure for the case of for the case of radiation and scattering (baffled 0.25 bilaminate, 10mm

steel, 20mm PZT4, flow source of strength 40 kg/s2) at frequency of 1000, voltage of 7.564(�8.7445�) applied in the

piezo.

Fig. 16. Pressure along the radial boundary of radius 1m for the case of only scattered pressure reduction (baffled 0.25

bilaminate, 10mm steel, 20mm PZT4, flow source of strength 40 kg/s2) at frequency of 1000.
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backscatter. Three-dimensional FEM modelling and experiment for underwater acoustic signal
reduction are for future study.
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